## metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# [1,3-Bis(diphenylphosphino)propane- $\kappa^2 P, P'$ ]diiodido(perfluoropropyl)-rhodium(III) dichloromethane solvate

#### Basu Panthi, Stephen L. Gipson\* and Andreas Franken

Chemistry Department, Baylor University, One Bear Place 97348, Waco, TX 76798, USA

Correspondence e-mail: stephen\_gipson@baylor.edu

Received 25 August 2008; accepted 17 September 2008

Key indicators: single-crystal X-ray study; T = 110 K; mean  $\sigma$ (C–C) = 0.009 Å; R factor = 0.041; wR factor = 0.089; data-to-parameter ratio = 15.9.

The structure of the title compound,  $[RhI_2(C_3F_7)(C_{27}H_{26}P_2)]$ -CH<sub>2</sub>Cl<sub>2</sub>, at 110 (2) K is an unusual example of a structurally characterized square-based pyramidal alkyl complex of rhodium(III). The Rh–C bond is relatively short at 1.996 (6) Å. This short metal–carbon bond length is typical of perfluoro complexes of transition metals and illustrates the enhanced bond strength in these compounds.

#### **Related literature**

The most closely related structure is that of *trans*-Rh(CF<sub>2</sub>H)(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (Burrell *et al.*, 1990). For similar squarebased pyramidal Rh<sup>III</sup> structures, see: Søtofte & Hjortkjær (1994); McGuiggan *et al.* (1980); Egglestone *et al.* (1977); Shie *et al.* (1989); Moloy & Petersen (1995). For perfluoroalkyl Rh<sup>III</sup> complexes having pseudo-octahedral piano-stool geometries, see: Churchill (1965); Hughes, Kovacik *et al.* (2001); Hughes *et al.* (1997); Bowden *et al.* (2002); Hughes, Lindner *et al.* (2001). For more information on bonding in perfluoroalkyl transition metal complexes, see: Gunawardhana *et al.* (2008).



#### **Experimental**

Crystal data

| erystat data                                      |                   |
|---------------------------------------------------|-------------------|
| $[RhI_2(C_3F_7)(C_{27}H_{26}P_2)] \cdot CH_2Cl_2$ | a = 14.0419 (6) Å |
| $M_r = 1023.08$                                   | b = 15.1273 (6) Å |
| Monoclinic, $P2_1/c$                              | c = 17.7722 (7) Å |

| $\beta = 110.299 \ (2)^{\circ}$ |
|---------------------------------|
| $V = 3540.6 (2) \text{ Å}^3$    |
| Z = 4                           |
| Mo $K\alpha$ radiation          |

### Data collection

Bruker Nonius X8 APEX CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2003)  $T_{\rm min} = 0.644, T_{\rm max} = 0.833$ 

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.041 & 406 \text{ parameters} \\ wR(F^2) &= 0.089 & \text{H-atom parameters constrained} \\ S &= 1.04 & \Delta\rho_{\text{max}} = 1.72 \text{ e } \text{\AA}^{-3} \\ 6467 \text{ reflections} & \Delta\rho_{\text{min}} = -0.89 \text{ e } \text{\AA}^{-3} \end{split}$$

 $\mu = 2.53 \text{ mm}^{-1}$ T = 110 (2) K

 $R_{\rm int} = 0.076$ 

 $0.19 \times 0.09 \times 0.08 \text{ mm}$ 

56038 measured reflections

6467 independent reflections

5127 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Selected geometric parameters (Å,  $^{\circ}$ ).

| I1-Rh1    | 2.6920 (6) | Rh1-P2    | 2.3185 (15) |
|-----------|------------|-----------|-------------|
| I2-Rh1    | 2.6743 (6) | Rh1-P1    | 2.3248 (15) |
| Rh1-C4    | 1.996 (6)  |           |             |
| C4-Rh1-P2 | 89.82 (18) | P1-Rh1-I2 | 164.46 (4)  |
| C4-Rh1-P1 | 96.10 (19) | C4-Rh1-I1 | 103.92 (17) |
| P2-Rh1-P1 | 92.02 (5)  | P2-Rh1-I1 | 166.17 (4)  |
| C4-Rh1-I2 | 99.44 (18) | P1-Rh1-I1 | 88.17 (4)   |
| P2-Rh1-I2 | 88.04 (4)  | I2-Rh1-I1 | 88.105 (17) |
|           |            |           |             |

Data collection: *APEX2* (Bruker, 2003); cell refinement: *APEX2*; data reduction: *APEX2*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank the Robert A. Welch Foundation (grant No. AA-1083) and Baylor University, in part, for support of this research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2099).

#### References

- Bowden, A. A., Hughes, R. P., Lindner, D. C., Incarvito, C. D., Liable-Sands, L. M. & Rheingold, A. L. (2002). J. Chem. Soc. Dalton Trans. pp. 3245–3252.
- Bruker (2003). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burrell, A. K., Clark, G. R., Jeffrey, J. G., Rickard, C. E. F. & Roper, W. R. (1990). J. Organomet. Chem. 388, 391–408.
- Churchill, M. R. (1965). Inorg. Chem. 12, 1734-1739.
- Egglestone, D. L., Baird, M. C., Lock, C. J. L. & Turner, G. (1977). J. Chem. Soc. Dalton Trans. pp. 1576–1582.
- Gunawardhana, N., Gipson, S. L. & Franken, A. (2008). *Inorg. Chim. Acta.* In the press.
- Hughes, R. P., Kovacik, I., Lindner, D. C., Smith, J. M., Willemsen, S., Zhang, D., Guzei, I. A. & Rheingold, A. L. (2001). Organometallics, 20, 3190–3197.
- Hughes, R. P., Lindner, D. C., Rheingold, A. L. & Liable-Sands, L. M. (1997). J. Am. Chem. Soc. 119, 11544–11545.
- Hughes, R. P., Lindner, D. C., Smith, J. M., Zhang, D., Incarvito, C. D., Lam, K.-C., Liable-Sands, L. M., Sommer, R. D. & Rheingold, A. L. (2001). J. Chem. Soc. Dalton Trans. pp. 2270–2278.
- McGuiggan, M. F., Doughty, D. H. & Pignolet, L. H. (1980). J. Organomet. Chem. 185, 241–249.

Moloy, K. G. & Petersen, J. L. (1995). Organometallics, 14, 2931-2936.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shie, J.-Y., Lin, Y.-C. & Wang, Y. (1989). J. Organomet. Chem. **371**, 383–392. Søtofte, I. & Hjortkjær, J. (1994). Acta Chem. Scand. **48**, 872–877.

Acta Cryst. (2008). E64, m1330 [doi:10.1107/S1600536808029978]

### [1,3-Bis(diphenylphosphino)propane- $\kappa^2 P, P'$ ]diiodido(perfluoropropyl)rhodium(III) dichloromethane solvate

#### B. Panthi, S. L. Gipson and A. Franken

#### Comment

The stucture of the title compound is shown in Fig. 1. The geometry about the rhodium atom is square-based pyramidal (sbp) with the perfluoropropyl group occupying the axial position. This geometry is similar to that of *trans*-Rh(CF<sub>2</sub>H)(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (Burrell *et al.*, 1990), *cis*-Rh(COMe)(dppp)I<sub>2</sub>, where dppp = 1,3-bis(diphenylphosphino)propane (Søtofte & Hjortkjaer, 1994), *cis*-Rh(COPh)(dppp)Cl<sub>2</sub> (McGuiggan *et al.*, 1980), *trans*-Rh(COCH<sub>2</sub>CH<sub>2</sub>Ph)(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (Egglestone *et al.*, 1977), and *cis*-Rh(COCH<sub>2</sub>CH<sub>3</sub>)(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (Shie *et al.*, 1989), without the significant distortion toward trigonal bipyramidal geometry reported for *cis*-Rh(COCH<sub>3</sub>)(dppp)I<sub>2</sub> by Moloy & Petersen (1995). The structure of the title compound includes one CH<sub>2</sub>Cl<sub>2</sub> solvent molecule, not shown in Fig. 1. We wish to report here the structure of this unique species, though complete characterization is not possible at this time due to our inability to find suitable methods for its reliable isolation and purification.

So far as we can determine, the title compound is only the second structure of a sbp alkyl-Rh(III) complex of the class Rh(R)(phosphine)<sub>2</sub>X<sub>2</sub> (X = halide). Numerous structures have been reported for sbp acyl complexes of this type, and there are quite a few published examples of alkyl-Rh(III) complexes with pseudo-octahedral piano stool geometries, including several perfluoroalkyl complexes of the type  $CpRh(R_f)(L)X(Cp = cyclopentadienyl, pentamethylcyclopentadienyl,$ tris(pyrazolyl)borate;  $R_f$  = perfluoroethyl, perfluoropropyl; L = CO, PMe<sub>3</sub>; X = Cl, H, H<sub>2</sub>O) (Churchill, 1965; Hughes, Kovacik et al., 2001; Hughes et al., 1997; Bowden et al., 2002; Hughes, Lindner et al., 2001). The importance of the title compound is that it sheds additional light on the bonding in perfluoroalkyl transition metal complexes. The Rh-C bond length of the title compound (1.996 (6) Å) compares favorably with that of the difluoromethyl complex (1.98 Å) and the sbp Rh(III)–acyl complexes (1.95–2.0 Å), but is somewhat shorter than those in the perfluoropropyl piano stool complexes (2.05–2.09 Å). While there has been some discussion as to whether the bond shortening observed for perfluoroalkyl and acyl ligands can be attributed to metal to ligand back-bonding (Moloy & Petersen, 1995), this is clearly not the case in comparing perfluoropropyl-Rh(III) complexes with sbp and piano stool geometries. Unfortunately, there are no reported structures for hydrocarbon Rh(III)-alkyl complexes with which to compare the title compound. The shortening of the metal-carbon bonds in perfluoroalkyl transition metal complexes, and the concomitant strengthening of this bond, has previously been explained in terms of electrostatic effects caused by the relatively large positive charge on the  $\alpha$ -carbon of the perfluoroalkyl group (Gunawardhana et al., 2008).

#### Experimental

Chlorodicarbonylrhodium(I) dimer,  $[Rh(CO)_2Cl]_2$ , (Strem Chemicals, 0.259 g, 1.34 mmol) was taken in a 100 ml round bottom flask into a nitrogen-atmosphere glove box and 12.5 ml of acetone was added. Then a solution of 0.216 g (1.44 mmol) of NaI in 7.5 ml of acetone was added and the mixture was stirred for about one hour. After that a solution of 1,3-bis(diphenylphosphino)propane (Strem Chemicals, 0.590 g, 1.43 mmol) in 7.5 ml of acetone was added. After about 3 h

the round bottom flask was taken out of the glove box and the solution was concentrated under reduced pressure, forming a yellow precipitate of Rh(CO)(dppp)I. This product was collected by filtration, washed with methanol and dried overnight in a vacuum oven at room temperature. A portion of this Rh(CO)(dppp)I (0.236 g, 0.35 mmol), NaI (0.358 g, 2.39 mmol) and heptafluorobutyryl chloride,  $C_3F_7COCl$ , (Acros Organics, 0.137 g, 0.56 mmol) were added to 10 ml of methylene chloride in a 100 ml Schlenk flask and their reaction was monitored by IR. Initially peaks were observed at 2056, 1996, 1789 and 1695 cm<sup>-1</sup>. The solution was stirred until only an IR absorption at 2075 cm<sup>-1</sup> remained. The solution was then filtered, the filtrate was concentrated under reduced pressure and a precipitate was obtained by the addition of hexane. NMR spectroscopy showed the precipitate to be impure and attempts at purification by chromatography failed. Finally, a small amount of the impure product was dissolved in methylene chloride, layered with hexanes and stored in a freezer for about four months. Single crystals of the title compound resulted from this treatment.

#### Refinement

All of the hydrogen atoms were set riding on their parent carbon atoms in calculated positions and were assigned fixed isotropic thermal parameters calculated as  $U_{iso}(H) = 1.2U_{iso}(C)$ . Phenyl-H atoms were set riding with C—H = 0.95 Å and dppp bridge H atoms with C—H = 0.99 Å. The residual density extrema result from a very slight disorder in the C<sub>3</sub>F<sub>7</sub> ligand and are located in its vicinity.

#### **Figures**



Fig. 1. A view of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The phenyl rings and the solvent  $CH_2Cl_2$  have been omitted for clarity.

#### [1,3-Bis(diphenylphosphino)propane- $\kappa^2 P_r$ [1,3-Bis(diphenylphos

| Crystal data                                     |                                                 |
|--------------------------------------------------|-------------------------------------------------|
| $[RhI_2(C_3F_7)(C_{27}H_{26}P_2)]\cdot CH_2Cl_2$ | $F_{000} = 1968$                                |
| $M_r = 1023.08$                                  | $D_{\rm x} = 1.919 {\rm ~Mg~m}^{-3}$            |
| Monoclinic, $P2_1/c$                             | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc                             | Cell parameters from 7865 reflections           |
| a = 14.0419 (6) Å                                | $\theta = 2.4 - 23.9^{\circ}$                   |
| <i>b</i> = 15.1273 (6) Å                         | $\mu = 2.53 \text{ mm}^{-1}$                    |
| c = 17.7722 (7) Å                                | T = 110 (2)  K                                  |
| $\beta = 110.299 \ (2)^{\circ}$                  | Needle, orange                                  |
| $V = 3540.6 (2) \text{ Å}^3$                     | $0.19\times0.09\times0.08~mm$                   |
| Z = 4                                            |                                                 |
|                                                  |                                                 |

#### Data collection

| Bruker Nonius X8 APEX CCD area-detector diffractometer      | 6467 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                    | 5127 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.077$                  |
| T = 110(2)  K                                               | $\theta_{\text{max}} = 25.4^{\circ}$   |
| $\phi$ and $\omega$ scans                                   | $\theta_{\min} = 1.8^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2003) | $h = -16 \rightarrow 16$               |
| $T_{\min} = 0.644, \ T_{\max} = 0.833$                      | $k = -18 \rightarrow 18$               |
| 56038 measured reflections                                  | $l = -21 \rightarrow 21$               |

#### Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                                 |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                             |
| $R[F^2 > 2\sigma(F^2)] = 0.041$                                | H-atom parameters constrained                                                        |
| $wR(F^2) = 0.089$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0249P)^2 + 19.6317P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.04                                                | $(\Delta/\sigma)_{\text{max}} = 0.001$                                               |
| 6467 reflections                                               | $\Delta \rho_{max} = 1.72 \text{ e} \text{ Å}^{-3}$                                  |
| 406 parameters                                                 | $\Delta \rho_{min} = -0.89 \text{ e } \text{\AA}^{-3}$                               |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                                          |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x             | У            | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|---------------|--------------|---------------|-------------------------------|
| I1  | 0.40578 (3)   | 0.70275 (3)  | 0.16010 (2)   | 0.02613 (11)                  |
| I2  | 0.17802 (3)   | 0.84549 (3)  | 0.06878 (2)   | 0.02804 (11)                  |
| Rh1 | 0.26222 (3)   | 0.76934 (3)  | 0.21248 (3)   | 0.01917 (11)                  |
| Cl1 | -0.21560 (15) | 0.72551 (15) | -0.03714 (13) | 0.0578 (5)                    |
| Cl2 | -0.09542 (19) | 0.81404 (16) | -0.12019 (13) | 0.0693 (6)                    |

| P1         | 0.36657 (11)         | 0.73432 (10)             | 0.34229 (9)            | 0.0210 (3)                    |
|------------|----------------------|--------------------------|------------------------|-------------------------------|
| P2         | 0.15974 (11)         | 0.85820 (10)             | 0.25875 (9)            | 0.0222 (3)                    |
| F1         | 0.1605 (3)           | 0.6371 (3)               | 0.2698 (2)             | 0.0382 (9)                    |
| F2         | 0.0631 (3)           | 0.6945 (3)               | 0.1569 (3)             | 0.0465 (10)                   |
| F3         | 0.2602 (3)           | 0.5426 (3)               | 0.1897 (3)             | 0.0515 (11)                   |
| F4         | 0.1739 (3)           | 0.6128 (3)               | 0.0763 (2)             | 0.0405 (10)                   |
| F5         | 0.0728 (3)           | 0.4927 (3)               | 0.1982 (3)             | 0.0567 (12)                   |
| F6         | 0.1130 (3)           | 0.4474 (3)               | 0.0965 (3)             | 0.0611 (12)                   |
| F7         | -0.0005 (3)          | 0.5454 (3)               | 0.0795 (3)             | 0.0596 (12)                   |
| C1         | 0.3056 (5)           | 0.7314 (4)               | 0.4179 (3)             | 0.0273 (14)                   |
| H1A        | 0.2595               | 0.6797                   | 0.4069                 | 0.033*                        |
| H1B        | 0.3587               | 0.7220                   | 0.4710                 | 0.033*                        |
| C2         | 0.2453 (5)           | 0.8132 (4)               | 0.4224 (3)             | 0.0310 (15)                   |
| H2A        | 0.2308               | 0.8116                   | 0.4731                 | 0.037*                        |
| H2B        | 0.2874               | 0.8662                   | 0.4239                 | 0.037*                        |
| C3         | 0.1458 (5)           | 0.8222 (4)               | 0.3528 (3)             | 0.0303 (15)                   |
| НЗА        | 0.1022               | 0.8652                   | 0.3677                 | 0.036*                        |
| H3B        | 0.1105               | 0.7644                   | 0.3438                 | 0.036*                        |
| C4         | 0.1655 (5)           | 0.6691 (4)               | 0.2002 (4)             | 0.0308 (15)                   |
| C5         | 0.1734 (5)           | 0.5873 (5)               | 0.1490 (4)             | 0.0410 (17)                   |
| C6         | 0.0904 (6)           | 0.5178 (5)               | 0.1333 (5)             | 0.0447 (19)                   |
| C11        | 0.4393 (4)           | 0.6312 (4)               | 0.3639 (3)             | 0.0240 (13)                   |
| C12        | 0.5436 (4)           | 0.6318 (4)               | 0.3805 (3)             | 0.0256 (13)                   |
| H12        | 0.5774               | 0.6856                   | 0.3784                 | 0.031*                        |
| C13        | 0.5984 (5)           | 0.5530 (4)               | 0.4002 (4)             | 0.0303 (15)                   |
| H13        | 0.6700               | 0.5537                   | 0.4133                 | 0.036*                        |
| C14        | 0 5499 (5)           | 0 4747 (4)               | 0 4007 (4)             | 0.0332 (15)                   |
| H14        | 0.5877               | 0.4213                   | 0.4130                 | 0.040*                        |
| C15        | 0 4454 (5)           | 0 4732 (4)               | 0 3834 (4)             | 0.0378 (16)                   |
| H15        | 0 4117               | 0.4189                   | 0 3841                 | 0.045*                        |
| C16        | 0.3908 (5)           | 0 5514 (4)               | 0.3652 (4)             | 0.0313 (15)                   |
| H16        | 0.3195               | 0.5505                   | 0.3534                 | 0.0313(15)                    |
| C21        | 0.4605 (4)           | 0.8225 (4)               | 0.3763 (3)             | 0.0226 (13)                   |
| C22        | 0.4951(5)            | 0.8681(4)                | 0.3703(5)              | 0.0220(13)<br>0.0295(14)      |
| H22        | 0.4700               | 0.8521                   | 0.2673                 | 0.0255 (11)                   |
| C23        | 0.5641 (5)           | 0.0321<br>0.0351 ( $4$ ) | 0.2073                 | 0.0370 (16)                   |
| H23        | 0.5869               | 0.9531 (4)               | 0.3094                 | 0.0370(10)                    |
| C24        | 0.5807               | 0.9598 (1)               | 0.3094<br>0.4270(4)    | 0.044<br>0.0371 (16)          |
| U24<br>H24 | 0.6484               | 1,0067                   | 0.4270 (4)             | 0.0371 (10)                   |
| C25        | 0.5686 (5)           | 0.9164 (5)               | 0.4810(4)              | 0.044<br>0.0380 (17)          |
| H25        | 0.5080 (5)           | 0.0320                   | 0.5360                 | 0.0307(17)                    |
| C26        | 0.3942               | 0.9329                   | 0.5500                 | 0.047                         |
| U20        | 0.4990 (5)           | 0.8480 (4)               | 0.4302 (3)             | 0.0324 (13)                   |
| C21        | 0.4709<br>0.2158 (4) | 0.0192                   | 0.4943                 | $0.039^{\circ}$<br>0.0240(13) |
| C32        | 0.2021 (5)           | 0.9077(4)                | 0.2017(3)<br>0.2548(4) | 0.0240(13)<br>0.0280(14)      |
| U32        | 0.2721 (3)           | 0.7757 (4)               | 0.2340 (4)             | 0.0207 (14)                   |
| C22        | 0.31/3               | 0.7505                   | 0.2240<br>0.2713 (4)   | 0.0357                        |
| U22        | 0.3320 (3)           | 1.0790 (3)               | 0.2713 (4)             | 0.0304 (10)                   |
| пээ<br>С24 | 0.3030               | 1.09/3                   | 0.2320                 | $0.044^{\circ}$               |
| 034        | 0.2901 (3)           | 1.1377 (4)               | 0.3143 (4)             | 0.0343 (13)                   |

| H34  | 0.3243      | 1.1953     | 0.3265      | 0.041*      |
|------|-------------|------------|-------------|-------------|
| C35  | 0.2180 (5)  | 1.1117 (5) | 0.3404 (4)  | 0.0396 (17) |
| H35  | 0.1912      | 1.1520     | 0.3688      | 0.048*      |
| C36  | 0.1792 (5)  | 1.0274 (4) | 0.3249 (4)  | 0.0335 (15) |
| H36  | 0.1269      | 1.0095     | 0.3440      | 0.040*      |
| C41  | 0.0291 (4)  | 0.8820 (4) | 0.1963 (3)  | 0.0226 (13) |
| C42  | -0.0519 (5) | 0.8303 (4) | 0.1997 (4)  | 0.0287 (14) |
| H42  | -0.0388     | 0.7795     | 0.2333      | 0.034*      |
| C43  | -0.1512 (5) | 0.8523 (5) | 0.1544 (4)  | 0.0389 (17) |
| H43  | -0.2057     | 0.8170     | 0.1574      | 0.047*      |
| C44  | -0.1708 (5) | 0.9251 (5) | 0.1052 (4)  | 0.0395 (17) |
| H44  | -0.2387     | 0.9398     | 0.0736      | 0.047*      |
| C45  | -0.0917 (5) | 0.9766 (5) | 0.1018 (4)  | 0.0372 (16) |
| H45  | -0.1057     | 1.0271     | 0.0680      | 0.045*      |
| C46  | 0.0080 (5)  | 0.9563 (4) | 0.1470 (4)  | 0.0282 (14) |
| H46  | 0.0617      | 0.9928     | 0.1443      | 0.034*      |
| C51  | -0.0967 (5) | 0.7705 (5) | -0.0287 (4) | 0.0471 (19) |
| H51A | -0.0442     | 0.7239     | -0.0102     | 0.057*      |
| H51B | -0.0793     | 0.8179     | 0.0122      | 0.057*      |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$      |
|-----|-------------|-------------|-------------|--------------|--------------|---------------|
| I1  | 0.0243 (2)  | 0.0355 (2)  | 0.0208 (2)  | 0.00564 (17) | 0.01062 (16) | -0.00196 (16) |
| I2  | 0.0282 (2)  | 0.0369 (2)  | 0.0225 (2)  | 0.00667 (18) | 0.01317 (17) | 0.01052 (17)  |
| Rh1 | 0.0193 (2)  | 0.0227 (2)  | 0.0189 (2)  | 0.00168 (19) | 0.01094 (19) | 0.00419 (18)  |
| Cl1 | 0.0378 (11) | 0.0687 (14) | 0.0676 (14) | -0.0103 (10) | 0.0192 (10)  | -0.0100 (11)  |
| Cl2 | 0.0813 (16) | 0.0722 (15) | 0.0477 (12) | -0.0137 (13) | 0.0138 (12)  | 0.0155 (11)   |
| P1  | 0.0232 (8)  | 0.0236 (8)  | 0.0193 (8)  | 0.0041 (6)   | 0.0113 (6)   | 0.0057 (6)    |
| P2  | 0.0225 (8)  | 0.0263 (8)  | 0.0219 (8)  | 0.0065 (6)   | 0.0130 (7)   | 0.0068 (6)    |
| F1  | 0.036 (2)   | 0.049 (2)   | 0.033 (2)   | -0.0120 (18) | 0.0163 (17)  | 0.0093 (17)   |
| F2  | 0.037 (2)   | 0.043 (2)   | 0.066 (3)   | 0.0145 (19)  | 0.027 (2)    | 0.009 (2)     |
| F3  | 0.044 (3)   | 0.052 (3)   | 0.057 (3)   | 0.025 (2)    | 0.015 (2)    | 0.002 (2)     |
| F4  | 0.047 (2)   | 0.047 (2)   | 0.029 (2)   | -0.0219 (19) | 0.0155 (18)  | 0.0021 (17)   |
| F5  | 0.073 (3)   | 0.051 (3)   | 0.055 (3)   | -0.029 (2)   | 0.033 (2)    | 0.005 (2)     |
| F6  | 0.067 (3)   | 0.044 (3)   | 0.079 (3)   | -0.004 (2)   | 0.034 (3)    | -0.018 (2)    |
| F7  | 0.039 (3)   | 0.066 (3)   | 0.075 (3)   | -0.003 (2)   | 0.020 (2)    | 0.002 (2)     |
| C1  | 0.029 (3)   | 0.039 (4)   | 0.018 (3)   | 0.011 (3)    | 0.014 (3)    | 0.008 (3)     |
| C2  | 0.039 (4)   | 0.039 (4)   | 0.024 (3)   | 0.017 (3)    | 0.021 (3)    | 0.016 (3)     |
| C3  | 0.034 (4)   | 0.040 (4)   | 0.025 (3)   | 0.017 (3)    | 0.021 (3)    | 0.011 (3)     |
| C4  | 0.027 (3)   | 0.030 (4)   | 0.043 (4)   | 0.007 (3)    | 0.022 (3)    | 0.015 (3)     |
| C5  | 0.045 (4)   | 0.045 (4)   | 0.037 (4)   | -0.007 (4)   | 0.019 (3)    | 0.003 (3)     |
| C6  | 0.052 (5)   | 0.037 (4)   | 0.060 (5)   | -0.005 (4)   | 0.038 (4)    | 0.010 (4)     |
| C11 | 0.026 (3)   | 0.027 (3)   | 0.022 (3)   | 0.006 (3)    | 0.012 (3)    | 0.003 (2)     |
| C12 | 0.026 (3)   | 0.031 (3)   | 0.022 (3)   | 0.005 (3)    | 0.012 (3)    | 0.003 (3)     |
| C13 | 0.029 (4)   | 0.037 (4)   | 0.025 (3)   | 0.009 (3)    | 0.011 (3)    | 0.008 (3)     |
| C14 | 0.045 (4)   | 0.031 (4)   | 0.029 (4)   | 0.012 (3)    | 0.020 (3)    | 0.006 (3)     |
| C15 | 0.048 (4)   | 0.025 (4)   | 0.043 (4)   | 0.004 (3)    | 0.019 (3)    | 0.010 (3)     |
|     |             |             |             |              |              |               |

| C16 | 0.030 (4) | 0.035 (4) | 0.034 (4) | 0.003 (3)  | 0.016 (3)  | 0.008 (3)  |
|-----|-----------|-----------|-----------|------------|------------|------------|
| C21 | 0.025 (3) | 0.022 (3) | 0.021 (3) | 0.009 (2)  | 0.009 (3)  | 0.002 (2)  |
| C22 | 0.029 (3) | 0.037 (4) | 0.019 (3) | -0.006 (3) | 0.004 (3)  | -0.004 (3) |
| C23 | 0.040 (4) | 0.036 (4) | 0.036 (4) | -0.009 (3) | 0.015 (3)  | 0.002 (3)  |
| C24 | 0.030 (4) | 0.030 (4) | 0.044 (4) | -0.003 (3) | 0.004 (3)  | -0.009 (3) |
| C25 | 0.043 (4) | 0.038 (4) | 0.025 (4) | 0.008 (3)  | -0.002 (3) | -0.007 (3) |
| C26 | 0.043 (4) | 0.035 (4) | 0.018 (3) | 0.006 (3)  | 0.009 (3)  | 0.003 (3)  |
| C31 | 0.026 (3) | 0.028 (3) | 0.020 (3) | 0.005 (3)  | 0.011 (3)  | 0.005 (2)  |
| C32 | 0.034 (4) | 0.028 (3) | 0.027 (3) | -0.001 (3) | 0.014 (3)  | -0.002 (3) |
| C33 | 0.041 (4) | 0.041 (4) | 0.033 (4) | -0.005 (3) | 0.018 (3)  | -0.001 (3) |
| C34 | 0.032 (4) | 0.034 (4) | 0.034 (4) | -0.001 (3) | 0.008 (3)  | -0.005 (3) |
| C35 | 0.040 (4) | 0.042 (4) | 0.042 (4) | 0.002 (3)  | 0.022 (3)  | -0.009 (3) |
| C36 | 0.031 (4) | 0.039 (4) | 0.038 (4) | -0.002 (3) | 0.021 (3)  | -0.004 (3) |
| C41 | 0.020 (3) | 0.025 (3) | 0.023 (3) | 0.003 (2)  | 0.008 (3)  | -0.002 (2) |
| C42 | 0.033 (4) | 0.021 (3) | 0.037 (4) | -0.001 (3) | 0.018 (3)  | -0.003 (3) |
| C43 | 0.033 (4) | 0.039 (4) | 0.047 (4) | -0.004 (3) | 0.017 (3)  | -0.007 (3) |
| C44 | 0.025 (4) | 0.047 (5) | 0.041 (4) | 0.006 (3)  | 0.006 (3)  | -0.006 (3) |
| C45 | 0.038 (4) | 0.039 (4) | 0.032 (4) | 0.011 (3)  | 0.009 (3)  | 0.008 (3)  |
| C46 | 0.025 (3) | 0.031 (4) | 0.030 (3) | 0.004 (3)  | 0.011 (3)  | 0.011 (3)  |
| C51 | 0.032 (4) | 0.064 (5) | 0.041 (4) | -0.009 (4) | 0.007 (3)  | -0.001 (4) |
|     |           |           |           |            |            |            |

#### Geometric parameters (Å, °)

| I1—Rh1  | 2.6920 (6)  | C15—C16 | 1.386 (9) |
|---------|-------------|---------|-----------|
| I2—Rh1  | 2.6743 (6)  | C15—H15 | 0.9500    |
| Rh1—C4  | 1.996 (6)   | С16—Н16 | 0.9500    |
| Rh1—P2  | 2.3185 (15) | C21—C26 | 1.391 (8) |
| Rh1—P1  | 2.3248 (15) | C21—C22 | 1.396 (8) |
| Cl1—C51 | 1.760 (7)   | C22—C23 | 1.365 (9) |
| Cl2—C51 | 1.761 (7)   | С22—Н22 | 0.9500    |
| P1—C21  | 1.826 (6)   | C23—C24 | 1.383 (9) |
| P1      | 1.827 (5)   | C23—H23 | 0.9500    |
| P1—C11  | 1.830 (6)   | C24—C25 | 1.364 (9) |
| P2—C41  | 1.821 (6)   | C24—H24 | 0.9500    |
| P2—C31  | 1.821 (6)   | C25—C26 | 1.378 (9) |
| Р2—С3   | 1.832 (6)   | С25—Н25 | 0.9500    |
| F1—C4   | 1.353 (7)   | C26—H26 | 0.9500    |
| F2—C4   | 1.428 (7)   | C31—C32 | 1.378 (8) |
| F3—C5   | 1.362 (8)   | C31—C36 | 1.394 (8) |
| F4—C5   | 1.351 (7)   | C32—C33 | 1.380 (9) |
| F5—C6   | 1.317 (8)   | С32—Н32 | 0.9500    |
| F6—C6   | 1.345 (8)   | C33—C34 | 1.379 (9) |
| F7—C6   | 1.367 (9)   | С33—Н33 | 0.9500    |
| C1—C2   | 1.518 (8)   | C34—C35 | 1.384 (9) |
| C1—H1A  | 0.9900      | С34—Н34 | 0.9500    |
| C1—H1B  | 0.9900      | C35—C36 | 1.376 (9) |
| C2—C3   | 1.517 (8)   | С35—Н35 | 0.9500    |
| C2—H2A  | 0.9900      | С36—Н36 | 0.9500    |
| C2—H2B  | 0.9900      | C41—C46 | 1.392 (8) |
|         |             |         |           |

| С3—НЗА     | 0.9900      | C41—C42     | 1.399 (8)  |
|------------|-------------|-------------|------------|
| С3—Н3В     | 0.9900      | C42—C43     | 1.387 (9)  |
| C4—C5      | 1.562 (9)   | C42—H42     | 0.9500     |
| C5—C6      | 1.522 (10)  | C43—C44     | 1.373 (10) |
| C11—C12    | 1.390 (8)   | C43—H43     | 0.9500     |
| C11—C16    | 1.390 (8)   | C44—C45     | 1.375 (9)  |
| C12—C13    | 1.397 (8)   | C44—H44     | 0.9500     |
| C12—H12    | 0.9500      | C45—C46     | 1.385 (8)  |
| C13—C14    | 1.368 (9)   | C45—H45     | 0.9500     |
| С13—Н13    | 0.9500      | C46—H46     | 0.9500     |
| C14—C15    | 1.391 (9)   | C51—H51A    | 0.9900     |
| C14—H14    | 0.9500      | C51—H51B    | 0.9900     |
| C4—Rh1—P2  | 89.82 (18)  | C13—C14—H14 | 119.9      |
| C4—Rh1—P1  | 96.10 (19)  | C15—C14—H14 | 119.9      |
| P2—Rh1—P1  | 92.02 (5)   | C16-C15-C14 | 119.5 (6)  |
| C4—Rh1—I2  | 99.44 (18)  | C16—C15—H15 | 120.2      |
| P2—Rh1—I2  | 88.04 (4)   | C14—C15—H15 | 120.2      |
| P1—Rh1—I2  | 164.46 (4)  | C15-C16-C11 | 120.8 (6)  |
| C4—Rh1—I1  | 103.92 (17) | C15—C16—H16 | 119.6      |
| P2—Rh1—I1  | 166.17 (4)  | C11—C16—H16 | 119.6      |
| P1—Rh1—I1  | 88.17 (4)   | C26—C21—C22 | 117.1 (6)  |
| I2—Rh1—I1  | 88.105 (17) | C26—C21—P1  | 121.7 (5)  |
| C21—P1—C1  | 104.1 (3)   | C22—C21—P1  | 121.1 (4)  |
| C21—P1—C11 | 105.5 (3)   | C23—C22—C21 | 121.5 (6)  |
| C1—P1—C11  | 101.2 (3)   | С23—С22—Н22 | 119.2      |
| C21—P1—Rh1 | 107.23 (19) | C21—C22—H22 | 119.2      |
| C1—P1—Rh1  | 116.1 (2)   | C22—C23—C24 | 120.0 (6)  |
| C11—P1—Rh1 | 121.06 (19) | С22—С23—Н23 | 120.0      |
| C41—P2—C31 | 102.8 (3)   | С24—С23—Н23 | 120.0      |
| C41—P2—C3  | 102.2 (3)   | C25—C24—C23 | 119.7 (6)  |
| C31—P2—C3  | 104.1 (3)   | C25—C24—H24 | 120.1      |
| C41—P2—Rh1 | 121.14 (19) | C23—C24—H24 | 120.1      |
| C31—P2—Rh1 | 109.46 (19) | C24—C25—C26 | 120.3 (6)  |
| C3—P2—Rh1  | 115.3 (2)   | С24—С25—Н25 | 119.8      |
| C2—C1—P1   | 115.6 (4)   | С26—С25—Н25 | 119.8      |
| C2—C1—H1A  | 108.4       | C25—C26—C21 | 121.2 (6)  |
| P1—C1—H1A  | 108.4       | C25—C26—H26 | 119.4      |
| C2—C1—H1B  | 108.4       | C21—C26—H26 | 119.4      |
| P1—C1—H1B  | 108.4       | C32—C31—C36 | 118.2 (6)  |
| H1A—C1—H1B | 107.5       | C32—C31—P2  | 122.0 (5)  |
| C3—C2—C1   | 113.8 (5)   | C36—C31—P2  | 119.8 (5)  |
| С3—С2—Н2А  | 108.8       | C31—C32—C33 | 121.3 (6)  |
| C1—C2—H2A  | 108.8       | C31—C32—H32 | 119.3      |
| C3—C2—H2B  | 108.8       | С33—С32—Н32 | 119.3      |
| C1—C2—H2B  | 108.8       | C34—C33—C32 | 119.9 (6)  |
| H2A—C2—H2B | 107.7       | С34—С33—Н33 | 120.0      |
| C2—C3—P2   | 114.3 (4)   | С32—С33—Н33 | 120.0      |
| С2—С3—Н3А  | 108.7       | C33—C34—C35 | 119.6 (6)  |
| Р2—С3—Н3А  | 108.7       | С33—С34—Н34 | 120.2      |

| С2—С3—Н3В   | 108.7     | С35—С34—Н34   | 120.2     |
|-------------|-----------|---------------|-----------|
| Р2—С3—Н3В   | 108.7     | C36—C35—C34   | 120.1 (6) |
| H3A—C3—H3B  | 107.6     | С36—С35—Н35   | 120.0     |
| F1—C4—F2    | 103.1 (4) | С34—С35—Н35   | 120.0     |
| F1—C4—C5    | 106.6 (5) | C35—C36—C31   | 120.8 (6) |
| F2—C4—C5    | 99.3 (5)  | С35—С36—Н36   | 119.6     |
| F1—C4—Rh1   | 114.9 (4) | С31—С36—Н36   | 119.6     |
| F2—C4—Rh1   | 112.0 (4) | C46—C41—C42   | 118.7 (6) |
| C5—C4—Rh1   | 118.8 (4) | C46—C41—P2    | 119.5 (4) |
| F4—C5—F3    | 110.5 (5) | C42—C41—P2    | 121.7 (5) |
| F4—C5—C6    | 106.2 (6) | C43—C42—C41   | 120.6 (6) |
| F3—C5—C6    | 103.9 (6) | C43—C42—H42   | 119.7     |
| F4—C5—C4    | 110.9 (5) | C41—C42—H42   | 119.7     |
| F3—C5—C4    | 108.4 (5) | C44—C43—C42   | 120.1 (6) |
| C6—C5—C4    | 116.7 (6) | C44—C43—H43   | 120.0     |
| F5—C6—F6    | 110.1 (6) | C42—C43—H43   | 120.0     |
| F5—C6—F7    | 106.6 (6) | C43—C44—C45   | 119.7 (6) |
| F6—C6—F7    | 102.9 (6) | C43—C44—H44   | 120.1     |
| F5—C6—C5    | 113.8 (6) | C45—C44—H44   | 120.1     |
| F6—C6—C5    | 110.0 (6) | C44—C45—C46   | 121.2 (6) |
| F7—C6—C5    | 112.8 (6) | C44—C45—H45   | 119.4     |
| C12—C11—C16 | 119.2 (6) | C46—C45—H45   | 119.4     |
| C12—C11—P1  | 120.6 (5) | C45—C46—C41   | 119.7 (6) |
| C16—C11—P1  | 120.2 (5) | C45—C46—H46   | 120.2     |
| C11—C12—C13 | 119.8 (6) | C41—C46—H46   | 120.2     |
| C11—C12—H12 | 120.1     | Cl1—C51—Cl2   | 112.3 (4) |
| C13—C12—H12 | 120.1     | Cl1—C51—H51A  | 109.2     |
| C14—C13—C12 | 120.5 (6) | Cl2—C51—H51A  | 109.2     |
| C14—C13—H13 | 119.7     | Cl1—C51—H51B  | 109.2     |
| С12—С13—Н13 | 119.7     | Cl2—C51—H51B  | 109.2     |
| C13—C14—C15 | 120.2 (6) | H51A—C51—H51B | 107.9     |



Fig. 1